493 research outputs found

    Trees of self-avoiding walks

    Full text link
    We consider the biased random walk on a tree constructed from the set of finite self-avoiding walks on a lattice, and use it to construct probability measures on infinite self-avoiding walks. The limit measure (if it exists) obtained when the bias converges to its critical value is conjectured to coincide with the weak limit of the uniform SAW. Along the way, we obtain a criterion for the continuity of the escape probability of a biased random walk on a tree as a function of the bias, and show that the collection of escape probability functions for spherically symmetric trees of bounded degree is stable under uniform convergence

    Nicotine dans l'air et nicotine/cotinine salivaire comme traceurs pour l'évaluation de l'exposition à la fumée passive

    Get PDF
    I. Introduction L'exposition Ă  la fumĂ©e environnementale du tabac est un sujet de controverse qui suscite divers dĂ©bats quant aux risques pour les non-fumeurs travaillant ou vivant Ă  cĂŽtĂ© des fumeurs. Des Ă©tudes Ă©pidĂ©miologiques ont Ă©tĂ© faites par le passĂ© pour Ă©valuer le risque des fumeurs en se basant principalement sur le nombre de cigarettes fumĂ©es par jour par le fumeur actif. Le choix de l'indicateur de la fumĂ©e du tabac environnementale est primordial, et il existe un grand nombre de paramĂštres : poussiĂšre totale, nombre de particules, le taux de CO, le condensat, la nicotine, les mĂ©tabolites urinaires ou salivaire comme la cotinine ou la nicotine, etc. Finalement, pour l'air, la nicotine peut ĂȘtre considĂ©rĂ©e comme un indicateur spĂ©cifique de la fumĂ©e du tabac. Un moniteur passif de nicotine (appelĂ© badge MoNIC) basĂ© sur le principe d'Ă©chantillonnage par diffusion est dĂ©veloppĂ© au sein d'IST pour Ă©valuer l'exposition au fumage passif Ă  la place de travail. Pour les indicateurs biologiques, la teneur de nicotine et cotinine dans la salive permet de valider l'exposition Ă  la fumĂ©e environnementale. La combinaison nicotine dans l'air et nicotine/cotine salvaire est proposĂ©e comme tracurs pour l'Ă©valuation de l'exposition Ă  la fumĂ©e passive. II. ExpĂ©rimentale et rĂ©sultats II.1. Analyse de nicotine prĂ©levĂ©e sur badge MoNIC La mĂ©thode MoNIC dĂ©veloppĂ© au sein d'IST est une adaptation de la mĂ©thode Hammond et Ogden, avec comme petites modifications le diamĂštre de filtre utilisĂ©, ∅ 25 mm au lieu et Ă  la place de filtre ∅ 37 mm et le support de filtre (Unisette cassette d'inclusion, blanc, rĂ©f. M505-2, Milian SA, GE). Une fois que le filtre imprĂ©gnĂ©s au bisulfate de sodium (40g dans 1 L d'eau bi-distillĂ©e) est exposĂ©, la casette MoNIC est conservĂ©e dans sa boĂźte ronde en polystyrĂšne transparente et retournĂ©e au laboratoire pour l'analyse. La nicotine est d'abord transformĂ©e en nicotine libre par l'ajout de 1 ml de solution 5N NaOH, agitation au Vortex pendant 1 minute, puis l'ajout de 1 ml de solution d'extraction (2 ng/ÎŒl de quinoline comme standard interne dans n-heptane ammoniaquĂ©). L'extraction liquide-liquide durant 1 minute au Vortex et une prise aliquot est prĂ©levĂ©e, transfĂ©rĂ©e dans un flacon pour l'analyse par chromatographie en phase gazeuse et dĂ©tecteur spĂ©cifique aux produits azotĂ©s NPD. II.2. DĂ©termination du nombre d'Ă©quivalent de cigarettes fumĂ©es passivement Pour simplifier, nous adoptons un taux de ventilation moyen de 10 l/min pour les travailleurs de bureau, ce qui correspond Ă  1000 fois la vitesse de prĂ©lĂšvement du badge MoNIC. Ce qui conduit Ă  multiplier par 1000 la quantitĂ© de nicotine prĂ©levĂ©e sur le badge pour exprimer la quantitĂ© Ă©quivalente inhalĂ©e par le travailleur. Une fois la quantitĂ© de nicotine inhalĂ©e dĂ©terminĂ©e, nous pouvons calculer le nombre Ă©quivalent de cigarettes inhalĂ©es passivement, en tenant compte du taux de nicotine de 0.2 mg/cigarette de cigarettes lĂ©gĂšres du commerce. II.3. Analyse de nicotine et de cotinine dans la salive La salive est prĂ©levĂ©e Ă  l'aide d'une paille par la personne exposĂ©e en la soufflant dans un rĂ©cipient en plastique. On prĂ©lĂšve 1ml de salive Ă  l'aide d'une pipette Eppendorf et on la transvase dans un flacon conique et silanisĂ© pour injecteur. La nicotine, la cotinine et la cafĂ©ine sont d'abord transformĂ©es en nicotine, cotinine et cafĂ©ine libres par l'ajout de 200 ÎŒl de solution A (1 ng/ÎŒl de quinoline (SI) dans l'eau ammoniaquĂ© avec l'antimousse), plus 100 ÎŒl de DichloromĂ©thane distillĂ©, agitation au Vortex pendant 1 minute, puis centrifugĂ©es pendant 10 minutes. On met directement le flacon sur l'auto-injercteur pour l'analyse par chromatographie en phase gazeuse et dĂ©tecteur spĂ©cifique aux produits azotĂ©s NPD. Pour la quantification, on utilise une courbe de calibration en prĂ©parant des solutions aqueuses de concentration de nicotine, cotinine et cafĂ©ine variant entre 500-1 ng/ml. La corrĂ©lation entre l'exposition dans l'air et la teneurs de nicotine et cotinine est pratiquement linĂ©aire et permet de confirmer de maniĂšre fiable l'exposition Ă  la fumĂ©e passive. Des exemples sont prĂ©sentĂ©s dans des bĂątiments publiques (CHUV, UniMail-GE) pour dĂ©montrer l'efficacitĂ© des mesures d'interdiction de fumer. III. Conclusions Le badge MoNIC est validĂ© au laboratoire sur un banc de gĂ©nĂ©ration d'atmosphĂšre contrĂŽlĂ©e pour analyser les concentrations de nicotine dans l'air au niveau ambiant. L'exposition du badge peut ĂȘtre variĂ©e entre quelques heures Ă  quelques jours voire quelques semaines, de maniĂšre cumulative. La limite de quantification de nicotine sur le badge est de 20 ng ou 0.02 ÎŒg. Ce qui correspond Ă  l'Ă©quivalent de 0.1 cigarette de force « 0.2 mg/cig de nicotine ». La limite supĂ©rieure est de 10 ÎŒg sur le badge, ce qui correspond Ă  l'Ă©quivalent de 50 cigarettes. Le moniteur MoNIC, accompagnĂ© de teneur de nicotine/cotinine salivaire peuvent servir d'outil d'Ă©valuation de l'exposition passive aux fumĂ©es de tabac environnemental et contribue Ă  fournir des indications utiles aux Ă©tudes Ă©pidĂ©miologiques futures

    (26.55 %, or 23.69 %)-Limiting Highest Efficiencies, obtained respectively in nn+(pp+) − pp(nn) Crystalline (XX ≡ CdTe, or CdSe)- Junction Solar Cells, Due to the Effects of Impurity Size, Temperature, Heavy Doping, and Photovoltaic Conversion

    Get PDF
     In the n+(p+)−p(n) crystalline (X≡ CdTe or CdSe)-junction solar cells at 300K, due to the effects of impurity size, temperature, heavy doping, and photovoltaic conversion, we show that, with an increasing donor (acceptor)-radius rd(a), both the relative dielectric constant and photovoltaic conversion factor decrease, and the intrinsic band gap (IBG) increases, according to the increase in photovoltaic efficiency, as observed in Tables 1-5, being in good accordance with an important result obtained by Shockley and Queisser (1961), stating that for an increasing IBG the photovoltaic efficiency increases. Further, for highest values of rd(a), the limiting highest efficiencies are found to be given in Tables 4, 6, as: 26.55 %, and 23.69 %, obtained in such n+(p+)−p(n) crystalline (CdTe, or CdSe)-junction solar cells at the open circuit voltage Voc=0.82 V, and 0.89 V, respectively, and at T=300 K. Furthermore, from the well-known Carnot-efficiency theorem, as given in Eq. (46), being obtained from the second principle of the thermodynamics, and from the above results of limiting highest efficiencies, the corresponding highest hot reservoir temperatures, TH=408.4 K, and 393.1 K, respectively. Thus, as noted above, ηmax. and TH both increase with an increasing IBG, for each (X≡ CdTe, or CdSe)- crystal at T=300 K≡TC.&nbsp

    13.05% (14.82 %) – Limiting Highest Efficiencies Obtained Respectively in n+(p+)-p(n) Crystalline Ge-Junction Solar Cells at T=300 K, Due to the Effects of Impurity Size, Temperature, Heavy Doping, and Photovoltaic Conversion

    Get PDF
    In the n+(p+)−p(n) crystalline Ge-junction solar cells at 300K, due to the effects of impurity size, temperature, heavy doping, and photovoltaic conversion, we show that, with an increasing donor (acceptor)-radius rd(a), both the relative dielectric constant and photovoltaic conversion factor decrease, and the intrinsic band gap (IBG) increases, according to the increase in photovoltaic efficiency, as observed in Tables 1, 2 and 3, being in good accordance with an important result obtained by Shockley and Queisser (1961), with the use of the second law of thermodynamics, stating that for an increasing IBG the photovoltaic efficiency increases. Further, for highest values of rd(a), the limiting highest efficiencies are found to be given in Tables 2 and 3, as: 13.05 % (14.82 %), obtained in such n+(p+)−p(n) crystalline Ge-junction solar cells at 300 K, respectively. Then, from the well-known Carnot-efficiency theorem, as given in Eq. (47), being obtained by the second principle of thermodynamics, and from those limiting highest efficiencies, the corresponding highest hot reservoir temperatures, TH, are found to be given by: 345.04 K (352.20 K), respectively. In other words, TH also increases with an increasing IBG, being a new result.&nbsp

    11.97% (12.12%)-Limiting Highest Efficiencies Obtained Respectively in nn+(pp+) − pp(nn) Crystalline GaSb Junction Solar Cells at T=300K, Due to the Effects of Impurity Size, Temperature, Heavy Doping, and Photovoltaic Conversion

    Get PDF
    In the n+(p+)−p(n) crystalline GaSb-junction solar cells at 300K, due to the effects of impurity size, temperature, heavy doping, and photovoltaic conversion, we show that, with an increasing donor (acceptor)-radius rd(a), both the relative dielectric constant and photovoltaic conversion factor decrease, and the intrinsic band gap increases, according to the increase in photovoltaic efficiency, as observed in Tables 1, 2 and 3, being in good accordance with an important result obtained by Shockley and Queisser (1961), with the use of the second law of thermodynamics, stating that for an increasing intrinsic band gap the photovoltaic efficiency increases. Further, for highest values of rd(a), the limiting highest efficiencies are found to be given in Tables 2 and 3, as: 11.97 % (12.12 %), obtained in such n+(p+)−p(n) crystalline GaSb-junction solar cells at 300 K, respectively.&nbsp

    (43.82 %, or 44.05 %)-Limiting Highest Efficiencies, Obtained Respectively in nn+(pp+) − pp(nn) Crystalline CdS-Junction Solar Cells at T=300 K, Due to the Effects of Impurity Size, Temperature, Heavy Doping, and Photovoltaic Conversion

    Get PDF
    In the n+(p+)-p(n) crystalline (SdS) junction solar cells at 300K, due to the effects of impurity size, temperature, heavy doping, and photovoltaic conversion, we show that, with an increasing donor (acceptor)-radius rd(a) both the relative dielectric constant and photovoltaic conversion factor decrease, and the intrinsic band gap (IBG) increases, according to the increase in photovoltaic efficiency n, as observed in Tables 1-3. This is found to be in good accordance with an important result obtained by Shockley and Queisser (1961), stating that, for a fixed fraction of the total radiative recombination (=1) and for an increasing IBG (0<IBG(eV) ≀1.1), n increases and its maximum value is equal to 30 % at IBG=1.1eV.  Further, for highest values of rd(a) the limiting highest efficiencies are found to be given in Tables 2 and 3, as: 43.82 %, and 44.05 %, obtained in such n+(p+)-p(n) crystalline CdS-junction solar cells at T=300 K, with a large value of IBG (2.395 eV â‰€IBG≀ 2.462eV, as seen in Table 1) and at the open circuit voltage Voc=2.7V. Furthermore, from the well-known Carnot-efficiency theorem, as given in Eq. (46), being obtained from the second principle of thermodynamics, and from the above results of limiting highest efficiencies, the corresponding highest hot reservoir temperatures, TH =534K and 536 K, respectively. Thus, as noted above, both nmax and TH increase with an increasing IBG, and at T=300 K=TC

    A NURBS-based spectral reflectance descriptor with applications in computer vision and pattern recognition

    Get PDF
    In this paper, we present a surface reflectance descriptor based on the control points resulting from the interpolation of Non-Uniform Rational B-Spline (NURBS) curves to multispectral reflectance data. The interpolation is based upon a knot removal scheme in the parameter domain. Thus, we exploit the local support of NURBS so as to recover a compact descriptor robust to noise and local perturbation of the spectra. We demonstrate the utility of our NURBS-based descriptor for material identification. To this end, we perform skin spectra recognition making use of a Support Vector Machine classifier. We also provide results on hyperspectral imagery and elaborate on the preprocessing step for skin segmentation. We compare our results with those obtained using an alternative descriptor
    • 

    corecore